FLOW DATA
Cv Values for DJ Series Butterfly Valves

Flow Characteristics (Static Clean Water)

Flow Rate Cv* Values

<table>
<thead>
<tr>
<th>SIZE Inch</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
<th>50°</th>
<th>60°</th>
<th>70°</th>
<th>80°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>18</td>
<td>29</td>
<td>47</td>
<td>75</td>
<td>107</td>
</tr>
<tr>
<td>2 1/2</td>
<td>65</td>
<td>0</td>
<td>12</td>
<td>22</td>
<td>39</td>
<td>64</td>
<td>102</td>
<td>163</td>
<td>232</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>0</td>
<td>17</td>
<td>33</td>
<td>57</td>
<td>94</td>
<td>149</td>
<td>240</td>
<td>341</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>29</td>
<td>55</td>
<td>96</td>
<td>158</td>
<td>252</td>
<td>404</td>
<td>577</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>0</td>
<td>44</td>
<td>83</td>
<td>145</td>
<td>369</td>
<td>381</td>
<td>610</td>
<td>871</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>0</td>
<td>66</td>
<td>126</td>
<td>219</td>
<td>362</td>
<td>576</td>
<td>922</td>
<td>1318</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>0</td>
<td>125</td>
<td>230</td>
<td>400</td>
<td>660</td>
<td>1050</td>
<td>1680</td>
<td>2400</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>0</td>
<td>160</td>
<td>325</td>
<td>575</td>
<td>950</td>
<td>1514</td>
<td>2423</td>
<td>3462</td>
</tr>
<tr>
<td>12</td>
<td>300</td>
<td>0</td>
<td>258</td>
<td>493</td>
<td>859</td>
<td>1418</td>
<td>2260</td>
<td>3618</td>
<td>5168</td>
</tr>
<tr>
<td>14</td>
<td>350</td>
<td>0</td>
<td>324</td>
<td>617</td>
<td>1076</td>
<td>1776</td>
<td>2829</td>
<td>4530</td>
<td>6472</td>
</tr>
<tr>
<td>16</td>
<td>400</td>
<td>0</td>
<td>433</td>
<td>826</td>
<td>1441</td>
<td>2378</td>
<td>3760</td>
<td>6068</td>
<td>8669</td>
</tr>
<tr>
<td>18</td>
<td>450</td>
<td>0</td>
<td>564</td>
<td>1076</td>
<td>1876</td>
<td>3096</td>
<td>4933</td>
<td>7898</td>
<td>11283</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
<td>0</td>
<td>588</td>
<td>1311</td>
<td>2286</td>
<td>3774</td>
<td>6012</td>
<td>9626</td>
<td>13751</td>
</tr>
<tr>
<td>24</td>
<td>600</td>
<td>0</td>
<td>1018</td>
<td>1942</td>
<td>3388</td>
<td>5590</td>
<td>8907</td>
<td>14688</td>
<td>22742</td>
</tr>
</tbody>
</table>

* Cv is defined as the flow in GPM that a valve will carry with a pressure drop of 1.0 psi, when the media is 60°F water.

LIQUID FLOW:

\[Q = \frac{Cv}{\sqrt{\Delta P/S}} \]

- Liquid flow rate (gallons per minute)
- \(\Delta P \) = pressure drop across valve (psi)
- \(S \) = specific gravity of the pipeline media
- Cv is defined as the flow in GPM that a valve will carry with a pressure drop of 1.0 psi when the media is water at 60º.

GAS FLOW:

\[Q = 1360 \times \frac{Cv}{\sqrt{\Delta P/P_1/ST}} \]

- Gas flow rate (SCFH — std. cu. ft./hr.)
- \(S \) = specific gravity of gas (air = 1.0)
- \(T \) = temp. - degrees rankin (ºF + 460)
- \(P_1 \) = upstream pressure (psia) absolute

Note that \(\Delta P \) must be less than .5 (Flow is critical when \(\Delta P \) is greater than .5 \(P_1 \)).

Example: Throttling Service

Given:
- \(Q = 975 \) GPM (Flow)
- \(\Delta P = 1.50 \) (Pressure Drop)
- \(S = \) (Specific Gravity)

\[1) \quad Cv = Q \times \frac{S}{\Delta P} = 975 \times \frac{1.50}{1.0} \]

2) From Cv table:
- 8" Valve Cv Flow Rate
- Open range 30 - 60°: 230 - 1050

3) Velocity - \(V = \frac{S \times 0.321}{A} \)

\[975 \times 0.321 \]

\[\frac{50.3}{102} = 6.22 \text{ ft./sec.} \]

6.22 ft./sec. is within the limits. So for given conditions, an 8" valve should be used.

VALVE SIZING

- **On/Off Service**
 - Simply select a valve which is the same as the piping system.

- **Throttling Service**
 - Select Cv data from above table: 30 - 60°
 - and follow these steps:
 1) Define:
 - \(Q \) - System flow requirements
 - \(\Delta P \) - Maximum allowable pressure drop
 - \(S \) - Specific gravity of the pipeline media
 2) Calculate Cv using above formula
 3) Select valve size between (30 - 60°)
 4) Do not exceed maximum velocity:
 - **Liquids:** 20 ft./second
 - **Gases:** 15,000 ft./minute
 \[V = \frac{S \times 0.321}{A} \text{ (liquid only)} \]
 \[A = \text{Area of pipe in square inches} \]