F14A (F18A for 14” - 16”)

Full and Regular Port, 2-piece body construction.
Standards:
- Design: ASME B16.34
- Wall Thickness: ASME B16.34
- Flanges: ASME B16.5
- Test: API 598
- FSM: API 607
- Top Flange: ISO5211 Face to Face: ASME B16.10 (Short and Long pattern).

<table>
<thead>
<tr>
<th>VALVE SIZE</th>
<th>Port</th>
<th>DIMENSIONS, inches</th>
<th>ISO 5211 Flange</th>
<th>Cv</th>
<th>Torque (in lbs.)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>0.55</td>
<td>6.5</td>
<td>3.2</td>
<td>5.9</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>0.75</td>
<td>7.5</td>
<td>3.7</td>
<td>5.9</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>1.00</td>
<td>8.5</td>
<td>4.3</td>
<td>5.9</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>1 1/2"</td>
<td>1.50</td>
<td>9.5</td>
<td>4</td>
<td>7.9</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>2</td>
<td>11.5</td>
<td>4.6</td>
<td>13.8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>3</td>
<td>14.4</td>
<td>5.4</td>
<td>13.8</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>4</td>
<td>17.8</td>
<td>8.5</td>
<td>19.7</td>
<td>7.7</td>
<td></td>
</tr>
</tbody>
</table>

F03
18 56 6.4

F05
40 86 9.3

F07
65 133 13

F10
150 265 25.4

F03
260 354 38.6

F07
980 1062 76.5

F10
1600 2213 151

F10
Values according to the pressure limitations of seats. See page 3-4.
Valve Finish

(1\(^{st}\) & smaller): phosphate and oil dipped.

> 8\(^{th}\): base primer 40 \(\mu\)m min.

Operation:

\(\leq 6\(^{th}\)\): lever.

> 8\(^{th}\): gear box.

For alternate materials please contact KCA.
Pressure - Temperature (P - T) ratings:
The P - T operating ratings in soft-seated floating ball valves are not only determined by the resistance of the Valve Body, but also by the limitations of their Seals and Seats. It is difficult to pinpoint the accurate P - T limit because of the boundless number of combinations between fluids and conditions. This is why the values that are shown below are an approximation and based on our own past experience.

Virgin PTFE: Inert to most media, low friction coefficient, subject to temperature limitations. Good performance in gas applications.

PTFE + Glass Fiber (15% G.F.): Good resistance to wear and deformation under load. Longer service life and higher pressure resistance than virgin PTFE. Suitable for foodstuffs, pharmaceutical and cosmetic industry applications.

PTFE + Glass Fiber (25% G.F.): Good resistance to wear and deformation under load. Longer service life and higher pressure resistance than PTFE + 15% G.F. Suitable for foodstuffs, pharmaceutical and cosmetic industry applications.

PTFE + Graphite (20% C + 5% Graph): Inert to most media. Higher P-T range than virgin PTFE. Used in steam and thermal oil applications.
HYPATITE (PTFE + PFA + compound): Good resistance to wear and under load. Higher chemical resistance than virgin PTFE.

PTFE + 50% SS (Stainless Steel): Good pressure resistance. Used for abrasive fluids or hard particles transportation.

UHMWPE (Ultra High Molecular Weight Polyethylene): Good for nuclear, tobacco, food industry, H₂SO₄, etc. Low friction coefficient.

Note: Other sealing materials, like TFM 1600, Polypropylene, PEEK+Graphite, FEP+Silicone, Fluoraz®, Kalrez®, Chemraz®, etc, are available upon request.